

Low Distortion, Wide Bandwidth Voltage Feedback Clamp Amps

AD8036/AD8037

FUNCTIONAL BLOCK DIAGRAM 8-Lead Plastic DIP (N), Cerdip (Q), and SO Packages

large-signal bandwidths and ultralow distortion. The AD8036 achieves -66 dBc at 20 MHz, and 240 MHz small-signal and 195 MHz large-signal bandwidths. The AD8036 and AD8037's recover from 2× clamp overdrive within 1.5 ns. These characteristics position the AD8036/AD8037 ideally for driving as well as buffering flash and high resolution ADCs.

In addition to traditional output clamp amplifier applications, the input clamp architecture supports the clamp levels as additional inputs to the amplifier. As such, in addition to static dc clamp levels, signals with speeds up to 240 MHz can be applied to the clamp pins. The clamp values can also be set to any value within the output voltage range provided that V_H is greater that V_L . Due to these clamp characteristics, the AD8036 and AD8037 can be used in nontraditional applications such as a full-wave rectifier, a pulse generator, or an amplitude modulator. These novel applications are only examples of some of the diverse applications which can be designed with input clamps.

The AD8036 is offered in chips, industrial $(-40^{\circ}\text{C to }+85^{\circ}\text{C})$ and military $(-55^{\circ}\text{C to }+125^{\circ}\text{C})$ package temperature ranges and the AD8037 in industrial. Industrial versions are available in plastic DIP and SOIC; MIL versions are packaged in cerdip.

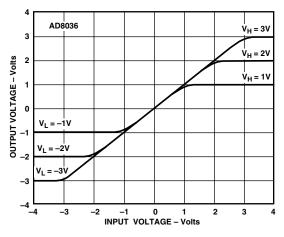


Figure 1. Clamp DC Accuracy vs. Input Voltage

FEATURES

Superb Clamping Charao 3 mV Clamp Error 1.5 ns Overdrive Recov Minimized Nonlinear (240 MHz Clamp Input	very Clamping R Bandwidth	-
±3.9 V Clamp Input Ra	0	
Wide Bandwidth	AD8036	AD8037
Small Signal	240 MHz	270 MHz
Large Signal (4 V p-p)	195 MHz	190 MHz
Good DC Characteristics	;	
2 mV Offset		
10 μV/°C Drift		
Ultralow Distortion, Low	v Noise	
–72 dBc typ @ 20 MHz		
4.5 nV/√Hz Input Volta	age Noise	
High Speed	-	
Slew Rate 1500 V/μs		
Settling 10 ns to 0.1%	16 ns to 0	01%
± 3 V to ± 5 V Supply Op		
	eration	

APPLICATIONS ADC Buffer IF/RF Signal Processing High Quality Imaging Broadcast Video Systems Video Amplifier Full Wave Rectifier

PRODUCT DESCRIPTION

The AD8036 and AD8037 are wide bandwidth, low distortion clamping amplifiers. The AD8036 is unity gain stable. The AD8037 is stable at a gain of two or greater. These devices allow the designer to specify a high (V_{CH}) and low (V_{CL}) output clamp voltage. The output signal will clamp at these specified levels. Utilizing a unique patent pending CLAMPINTM input clamp architecture, the AD8036 and AD8037 offer a 10× improvement in clamp performance compared to traditional output clamping devices. In particular, clamp error is typically 3 mV or less and distortion in the clamp region is minimized. This product can be used as a classical op amp or a clamp amplifier where a high and low output voltage are specified.

The AD8036 and AD8037, which utilize a voltage feedback architecture, meet the requirements of many applications which previously depended on current feedback amplifiers. The AD8036 and AD8037 exhibit an exceptionally fast and accurate pulse response (16 ns to 0.01%), extremely wide small-signal and

CLAMPIN is a trademark of Analog Devices, Inc.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

AD8036/AD8037-SPECIFICATIONS

ELECTRICAL CHARACTERISTICS $(\pm V_S = \pm 5 \text{ V}; \text{ R}_{LOAD} = 100 \Omega; \text{ A}_V = +1 \text{ (AD8036)}; \text{ A}_V = +2 \text{ (AD8037)}, \text{ V}_H, \text{ V}_L \text{ open, unless otherwise noted)}$

Parameter	Conditions	AI Min	08036A Typ	Max		D8037. Typ		Unit
DYNAMIC PERFORMANCE			- yp	man		- JP	11100	<u> </u>
Bandwidth (-3 dB)		150	240		200	070		
Small Signal Large Signal ¹	$V_{OUT} \le 0.4 \text{ V p-p}$ 8036, $V_{OUT} = 2.5 \text{ V p-p}$; 8037, $V_{OUT} = 3.5 \text{ V p-p}$	150 160	240 195		200 160	270 190		MHz MHz
Bandwidth for 0.1 dB Flatness	$V_{OUT} \le 0.4 \text{ V p-p}$	100	195		100	190		101112
	$8036, R_F = 140 \Omega; 8037, R_F = 274 \Omega$		130			130		MHz
Slew Rate, Average +/-	$V_{OUT} = 4 V $ Step, 10–90%	900	1200		1100	1500		V/µs
Rise/Fall Time	$V_{OUT} = 0.5 \text{ V Step}, 10-90\%$		1.4			1.2		ns
Settling Time	$V_{OUT} = 4 V Step, 10-90\%$		2.6			2.2		ns
To 0.1%	$V_{OUT} = 2 V Step$		10			10		ns
To 0.01%	$V_{OUT} = 2 V Step$		16			16		ns
HARMONIC/NOISE PERFORMANCE								
2nd Harmonic Distortion	2 V p-p; 20 MHz, R_L = 100 Ω		-59	-52		-52	-45	dBc
	$R_L = 500 \Omega$		-66	-59		-72	-65	dBc
3rd Harmonic Distortion	$2 V p-p; 20 MHz, R_L = 100 \Omega$ $R_L = 500 \Omega$		-68 -72	-61 -65		-70 -80	-63 -73	dBc dBc
3rd Order Intercept	$R_L = 500 \Omega_2$ 25 MHz		46	-05		-80 41	-15	dBm
Noise Figure	$R_{\rm S} = 50 \ \Omega$		18			14		dB
Input Voltage Noise	1 MHz to 200 MHz		6.7			4.5		nV√ <u>Hz</u>
Input Current Noise	1 MHz to 200 MHz		2.2			2.1		pA√Hz
Average Equivalent Integrated Input Noise Voltage	0.1 MHz to 200 MHz		95			60		uV maa
Differential Gain Error (3.58 MHz)	0.1 MHz to 200 MHz $R_{I} = 150 \Omega$		95 0.05	0.09		60 0.02	0.04	μV rms %
Differential Phase Error (3.58 MHz)	$R_{\rm L} = 150 \ \Omega$		0.02	0.04			0.04	Degree
Phase Nonlinearity	DC to 100 MHz		1.1			1.1		Degree
CLAMP PERFORMANCE								
Clamp Voltage Range ²	V _{CH} or V _{CL}	±3.3	±3.9		±3.3	± 3.9		V
Clamp Accuracy	$2 \times$ Overdrive, $V_{CH} = +2$ V, $V_{CL} = -2$ V		±3	± 10		±3	±10	mV
Clamp Nonlinearity Range ³	T _{MIN} -T _{MAX}		100	±20		100	±20	mV mV
Clamp Input Bias Current (V_H or V_L)	8036 , $V_{H, L} = \pm 1$ V; 8037 , $V_{H, L} = \pm 0.5$ V		± 40	±60		± 50	±70	μA
	$T_{MIN}-T_{MAX}$			± 80			±90	μA
Clamp Input Bandwidth (-3 dB)	V_{CH} or $V_{CL} = 2 V p - p$	150	240		180	270		MHz
Clamp Overshoot	$2 \times$ Overdrive, V_{CH} or $V_{CL} = 2 V p-p$		1	5		1	5	%
Overdrive Recovery	2× Overdrive		1.5			1.3		ns
DC PERFORMANCE ⁴ , $R_L = 150 \Omega$ Input Offset Voltage ⁵			2	7		2	7	mV
input Onset voltage	T _{MIN} -T _{MAX}		Z	11		2	10	mV
Offset Voltage Drift	MIN MAX		± 10			±10	10	μV/°C
Input Bias Current			4	10		3	9	μA
	T _{MIN} -T _{MAX}			15			15	μA
Input Offset Current			0.3	3 5		0.1	3 5	μΑ μΑ
Common-Mode Rejection Ratio	$\begin{array}{c} T_{MIN} - T_{MAX} \\ V_{CM} = \pm 2 \ V \end{array}$	66	90	J	70	90	J	dB
Open-Loop Gain	$V_{OUT} = \pm 2.5 V$	48	55		54	60		dB
	T _{MIN} -T _{MAX}	40			46			dB
INPUT CHARACTERISTICS								
Input Resistance			500			500		kΩ
Input Capacitance Input Common-Mode Voltage Range			1.2 ±2.5			1.2 ±2.5		pF V
			± 4.9			±4.J		v
OUTPUT CHARACTERISTICS Output Voltage Range, $R_L = 150 \Omega$		±3.2	±3.9		±3.2	±3.9		v
Output Voltage Kange, $K_L = 150.52$ Output Current		- 9.4	± 3.9 70		1.2	± 3.9 70		w mA
Output Resistance			0.3			0.3		Ω
Short Circuit Current			240			240		mA
POWER SUPPLY								
Operating Range		±3.0	±5.0	±6.0	±3.0	±5.0	±6.0	V
Quiescent Current			20.5	21.5		18.5	19.5	mA
Power Supply Dejection Datio	$T_{MIN}-T_{MAX}$	50	60	25	56	66	24	mA dB
Power Supply Rejection Ratio	T _{MIN} -T _{MAX}	50	60		56	66		ub

NOTES ¹See Max Ratings and Theory of Operation sections of data sheet. ²See Max Ratings.

³Nonlinearity is defined as the voltage delta between the set input clamp voltage (V_H or V_L) and the voltage at which V_{OUT} starts deviating from V_{IN} (see Figure 73).

⁴Measured at $A_V = 50$. ⁵Measured with respect to the inverting input.

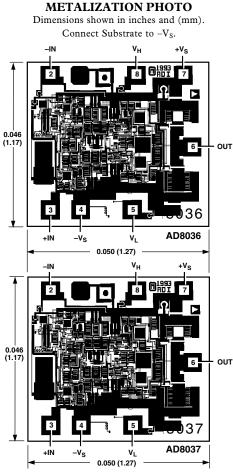
Specifications subject to change without notice.

AD8036/AD8037

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage 12.6 V
Voltage Swing × Bandwidth Product 350 V-MHz
$ V_{H}-V_{IN} \dots \le 6.3 V$
$ V_L - V_{IN} \dots \leq 6.3 \text{ V}$
Internal Power Dissipation ²
Plastic DIP Package (N) 1.3 Watts
Small Outline Package (SO) 0.9 Watts
Input Voltage (Common Mode) $\dots \dots \dots$
Differential Input Voltage ±1.2 V
Output Short Circuit Duration

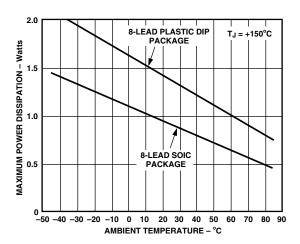
Observe Power Derating Curves
Storage Temperature Range N, R65°C to +125°C
Operating Temperature Range (A Grade)40°C to +85°C
Lead Temperature Range (Soldering 10 sec) 300°C
NOTES


Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²Specification is for device in free air:

8-Lead Plastic DIP: $\theta_{JA} = 90^{\circ}C/W$

8-Lead SOIC: $\theta_{JA} = 155^{\circ}C/W$


8-Lead Cerdip: $\theta_{JA} = 110^{\circ}C/W$.

MAXIMUM POWER DISSIPATION

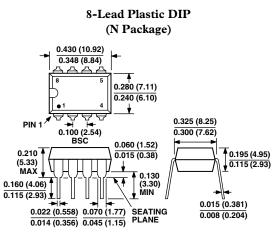
The maximum power that can be safely dissipated by these devices is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately 150°C. Exceeding this limit temporarily may cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of 175°C for an extended period can result in device failure.

While the AD8036 and AD8037 are internally short circuit protected, this may not be sufficient to guarantee that the maximum junction temperature (150°C) is not exceeded under all conditions. To ensure proper operation, it is necessary to observe the maximum power derating curves.

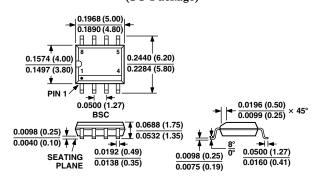
Figure 2. Plot of Maximum Power Dissipation vs. Temperature

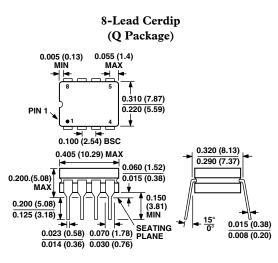
Model	Temperature Range	Package Description	Package Option	
AD8036AN	-40°C to +85°C	Plastic DIP	N-8	
AD8036AR	-40°C to +85°C	SOIC	SO-8	
AD8036AR-REEL	-40°C to +85°C	13" Tape and Reel	SO-8	
AD8036AR-REEL7	–40°C to +85°C	7" Tape and Reel	SO-8	
AD8036ACHIPS	–40°C to +85°C	Die		
AD8036-EB		Evaluation Board		
5962-9559701MPA	–55°C to +125°C	Cerdip	Q-8	
AD8037AN	-40°C to +85°C	Plastic DIP	N-8	
AD8037AR	–40°C to +85°C	SOIC	SO-8	
AD8037AR-REEL	-40°C to +85°C	13" Tape and Reel	SO-8	
AD8037AR-REEL7	–40°C to +85°C	7" Tape and Reel	SO-8	
AD8037ACHIPS	–40°C to +85°C	Die		
AD8037-EB		Evaluation Board		

ORDERING GUIDE


CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8036/AD8037 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.




OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

8-Lead Plastic SOIC (SO Package)

